九州本土の再生可能エネルギー発電設備に対する
接続申込みの回答保留について

【詳細説明資料】

平成 ○○年 9月 ○○日

九州電力株式会社
1 九州の再エネ設備認定量・接続量は全国で最も高い水準

2 昨年度末に太陽光の接続契約申込みが急増

3 契約申込みを全て接続すると太陽光・風力は近い将来約800万kWに到達

4 太陽光が需要を上回る電力の安定供給が困難となる見通し
 （参考）需給のバランスが崩れると大規模な停電となる恐れ

5 需給をバランスさせるための太陽光以外の電源の必要性

6 発電電力が需要を上回る場合の接続可能量の検討

7 回答の保留
 （参考）系統接続手続きの概要
1 九州の再エネ設備認定量・接続量は全国で最も高い水準 (1)

- 平成28年7月の固定価格買取制度（以下、FIT）開始以降、太陽光発電（以下、太陽光）を中心に再生可能エネルギー（以下、再エネ）の普及が進んできました。
- 九州における太陽光・風力のFITによる設備認定量は全国の10%を占めており、夏季ピーク需要に対する比率で見ても最も高い水準であり、ピーク需要を1割以上、上回っております。

平成28年5月末の太陽光・風力の設備認定状況（FIT開始以降新規認定分）

同左（地域別割合）

- 円グラフ：九州、北海道、東北、関東、中部、近畿、中国、四国、九州、沖縄
- 合計：400万kW

- 円グラフ内の数字は当該地域に相当する28年夏季ピーク需要
- （ ）は当該地域に相当する28年夏季ピーク需要に対する比率（％）
1 九州の再エネ設備認定量 接続量は全国で最も高い水準（2）

○ 既に発電中の太陽光・風力の設備量（接続量）は、全国の24%を占めております。

太陽光・風力の接続状況（平成30年3月末）

<太陽光>

<table>
<thead>
<tr>
<th>北海道</th>
<th>東北</th>
<th>東京</th>
<th>中部</th>
<th>北陸</th>
<th>関西</th>
<th>中国</th>
<th>四国</th>
<th>九州</th>
<th>沖縄</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>接続量 万 kWh</td>
<td></td>
</tr>
<tr>
<td>比率 %</td>
<td></td>
</tr>
</tbody>
</table>

<風力>

<table>
<thead>
<tr>
<th>北海道</th>
<th>東北</th>
<th>東京</th>
<th>中部</th>
<th>北陸</th>
<th>関西</th>
<th>中国</th>
<th>四国</th>
<th>九州</th>
<th>沖縄</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>接続量 万 kWh</td>
<td></td>
</tr>
<tr>
<td>比率 %</td>
<td></td>
</tr>
</tbody>
</table>

<太陽光 + 風力>

<table>
<thead>
<tr>
<th>北海道</th>
<th>東北</th>
<th>東京</th>
<th>中部</th>
<th>北陸</th>
<th>関西</th>
<th>中国</th>
<th>四国</th>
<th>九州</th>
<th>沖縄</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>接続量 万 kWh</td>
<td></td>
</tr>
<tr>
<td>比率 %</td>
<td></td>
</tr>
</tbody>
</table>

出典：総合資源エネルギー調査会 県エネルギー 新エネルギー分科会 新エネルギー小委員会（平成30年3月1日 資源エネルギー庁）
2 昨年度末に太陽光の接続契約申込みが急増

○ 平成□年度からのFII単価値下げ（太陽光□□□以上：□□□□円□□□□税抜）や、低圧敷地分割の設備認定中止措置により、平成□年度末には3月のわずか1か月間で、それまでの1年分の申込み量に相当する約7万件もの太陽光の接続契約申込みがありました。

□ 本来、高圧・特別高圧で接続する発電設備の規模であるが、□□□□未満に多数分割し、低圧での接続を申入れるもの（参考資料5参照）
3 契約申込みを全て接続すると太陽光・風力は近い将来約 万 MW に到達

○ 本年 3 月の膨大な申込みに対し、申込み内容の詳細の確認や、系統接続にあたっての技術検討などを行ってまいりました。

○ 7 月末現在の接続契約申込み量が全て接続された場合、近い将来、太陽光・風力の接続量は、約 万 MW にも達することが判明しました。これは、電気の使用が少ない時期（春、秋）の昼間の電力需要を上回る水準です。

太陽光・風力の申込み状況

設備認定：太陽光（） 風力（）（開始以降の新規認定分）
+ 申込前： 太陽光（） 風力（）
4 太陽光が需要上回り電力の安定供給が困難となる見通し

- 本年7月末時点の太陽光の接続契約申込み量が全て接続された場合、春や秋の電気の使用が少ない時期の晴天時などには、昼間の太陽光の発電電力が需要を上回る見通しです。(図1)

- 電気は、使用(需要)と発電(供給)が同時に行われることから、電力を安定的に供給するためには、その需要と供給を、常時一致(需給をバランス)させる必要があり、太陽光の発電電力(供給)が電気の使用(需要)を上回った場合、電力の安定供給が困難となる見通しです。

- また、太陽光は夜間は発電できず、昼間も、天気が晴から雨に急変した場合(図2)は、太陽光の発電電力が急激に減少して電気の使用(需要)を賄えなくなります。また、雨天日も、需要に対して、太陽光の発電電力が不足するので、太陽光だけでは、安定供給を維持できません。(図3)

太陽光の発電電力

\[\text{電気の使用が少ない時期の昼間の需要(約 \(x\)万 \(\square\))}\]

- 図1 晴天日
- 図2 晴のち雨
- 図3 雨天日

1 接続済分と接続契約申込分(約 \(\square\)万 \(\square\))が全て運転した場合
2 接続済分(平成 \(\square\)年 月末 約 \(\square\)万 \(\square\))のみの場合
○ 需給を常時バランスさせることで、周波数を一定(lez)に維持。

![電気の使用(需要) = 発電(供給)](image)

需要 < 供給の場合、
周波数は上昇する

需要 > 供給の場合、
周波数は低下する

○ 太陽光を含む発電電力が必要を大きく上回ると、需要と供給のバランスが崩れ、周波数が
上昇し、場合によっては、自動的に発電機が停止して、周波数を一定に維持するのが困難
となり、大規模な停電となる恐れ。

![電気の使用(需要) < 発電(供給)](image)
5 需給をバランスさせるための太陽光以外の電源の必要性

○ 日の電気の使用（需要）を安定的に賄うためには、夜間には太陽光以外の電源による発電が必要であり、昼間には、太陽光の発電電力の変動に応じて、この太陽光以外の電源の発電電力を調整して対応する必要があります。（図4）

○ 特に、晴のち雨の場合など、太陽光の発電電力が急減した場合には、ただちに、太陽光以外の電源の発電電力を急増させる必要があります。（図5）

需要と供給のバランス

図4 静天日 図5 晴のち雨

太陽光の発電電力の増減に対応するため、太陽光以外の電源の発電電力を増減することにより、需給をバランス
6 発電電力が需要を上回る場合の接続可能量の検討

○ 昼間における太陽光を含めた発電電力が需要を上回る場合は、揚水運転（水を上ダムに上げる）の活用、地域間連系線を活用した九州外への送電、太陽光・風力の出力抑制（注）等による対応が必要となります。（図 6, 7）

（注）地域法に基づき、4000kW以上の太陽光・風力は年間10日に限で出力抑制

○ 九州本土において、電力の安定供給を前提に、太陽光等の再エネをどこまで受け入れることができるか（接続可能量）を見極めるためには、太陽光以外の電源の運用等も含め検討が必要です。

需要と供給のバランス

図 6 青天日

図 7 青のち雨

太陽光の発電電力の増減に対応するため、太陽光以外の電源の発電電力を増減することにより、需給をバランス
7 回答の保留

○ 電力の安定供給の観点から、当社は九州本土において、現時点で再エネをどこまで受け入れることができるかを見極める検討を行います。

○ この間（数か月）、既に再エネの申込みをされている事業者さま、及び今後新規申込みをされる事業者さまにつきまして、申込みに対する当社の回答をしばらく保留させていただきます。

○ なお、回答保留期間中においても、事業者さまが太陽光・風力への蓄電池の併設や、バイオマス・地熱・水力発電の出力調整など、昼間に電力を系統へ流さない方策をご提案される場合は、電力の安定供給に影響を及ぼさないことから、個別に協議をさせていただきます。

<table>
<thead>
<tr>
<th>適用開始日</th>
<th>平成13年9月11日</th>
</tr>
</thead>
<tbody>
<tr>
<td>対象エリア</td>
<td>九州本土全域（本土と連系している離島を含む）</td>
</tr>
<tr>
<td>発電設備</td>
<td>電気事業者による再生可能エネルギー電気の調達に関する特別措置法により規定される全ての再生可能エネルギー（太陽光、風力、水力、地熱、バイオマス）</td>
</tr>
<tr>
<td>電圧種別</td>
<td>低圧（注1）、高圧、特別高圧</td>
</tr>
<tr>
<td>申込み区分</td>
<td>新規申込み（事前相談、接続検討、接続契約）</td>
</tr>
<tr>
<td>申込者へのお知らせ</td>
<td>プレス発表、説明会の開催、ダイレクトメールでのお知らせ、受付窓口での個別説明など</td>
</tr>
</tbody>
</table>

注1: ご家庭用の太陽光など低圧のみ未満（余剰買取）については、当面対象外
○ 系統接続に必要な手続きの大まかな流れは以下のとおり。

[事前相談]
再エネ事業者さま 事前相談申込（任意） → 当社 事前相談

[接続検討]
接続検討申込 → 高压 特別高压 受付
回答受領 → 接続検討（事前） 回答送付

[接続契約]
接続契約申込 → 高压 特別高压 受付
低圧 受付

○ 今回、これ以降の手続きを保留させていただきます。
（参考資料）目次

（参考資料１）太陽光・風力の設備認定量の県別内訳
（参考資料２）系統制約面の課題
（参考資料３）配電線の電圧対策、配電用変圧器の逆潮流への対応
（参考資料４）スマートグリッド実証試験の概要
（参考資料５）低圧敷地分割の概要
（参考資料６）太陽光・風力発電電力の天気による変化
（参考資料７）供給のバランスが崩れた場合の大規模停電の事例
（参考資料８）個別協議の要件
九州における太陽光・風力の設備認定量は、鹿児島県が最も多く九州全体の約1/4を占めております。
大分県、熊本県、宮崎県、鹿児島県の4県で九州全体の約3/4を占めております。
○ 太陽光発電の申込みの急増に伴い、各地域（特に九州中・南部）において、既設送変電設備の容量が不足し、送電線や変電所の増強が必要な地域（系統制約のある地域）が広範囲にわたり発生しています。

○ 再エネの接続のために必要となる系统増強費用は、事業者さまにご負担頂きますが、系統制約のある地域において、負担額の高額化に伴う申込み辞退や、他の事業者さまからの新たな申込みにより、接続事業者の確定に時間を要している状況です。
○ 太陽光発電の普及拡大に伴い、
系統側への電気の流入（逆潮流）が増加した場合には配電系統の電圧が上昇することから、この対策として、電圧調整装置の設置や柱上変圧器の増設などの対策を実施しております。
配電用変電所を越えて上位の系統へ電気を流す「バンクの逆潮流」については、従来認められていませんでしたが、保安上の技術的な対策を上位系統側に施すことを条件として、逆潮流を認めるという規制緩和が実施され、当社においても、逆潮流の対象となる変電所等から随時対策を進めております。

出典 総合エネルギー調査会 新エネルギー小委員会 買取制度運用ワーキンググループ検討結果 平成30年08月10日 資源エネルギー庁
(参考資料4）スマートグリッド実証試験の概要

○将来の再エネ大量導入を見据え、高品質、高信頼度、かつ効率的な電力供給を維持できるよう以下の取組みを実施しております。

・太陽光・風力の出力予測技術の開発
 需要と供給を常時一致させるため、気象条件により出力が大きく変化する太陽光・風力発電の出力予測の精度向上

・配電線の電圧対策等
 太陽光発電等の大量接続に対応可能な配電線の電圧制御方式の検討等

・電力使用量に関する検証
 電力使用量の見える化による省エネ効果や、料金メニューの多様化による電力使用量の変化の検証
（参考資料5）低圧敷地分割の概要

○同一の事業地における大規模な太陽光発電設備（例：高圧連系となる***以上の設備）を、小規模設備（例：低圧連系となる***未満の設備）に分割し、複数の連系案件として電力会社との接続協議に臨むケース（低圧敷地分割）が存在しております。

○こうした分割は、高圧連系で必要とされる電気主任技術者の選任が不必要となること等もあって、社会的に不公平が生じており、また、小規模に分割することにより、電力会社にとっては不必要的メーター、電柱等を設置することになり、社会的な非効率性が生じる恐れがあると国の「買取制度運用ワーキンググループ」において結論が得られ、平成***年度から、低圧敷地分割が設備認定されない措置（中止措置）がとられました。

出典：総合資源エネルギー調査会 新エネルギー小委員会 買取制度運用ワーキンググループ検討結果（平成***年 月 日 資源エネルギー庁）
太陽光・風力の発電電力は、天気により大きく変化します。
【欧州大停電】

○ 3つのエリアが地域間連系線により電気を送受電。

○ 地域間連系線が遮断し、エリアが3つに分離したことにより、送電側のエリア2は供給力が需要を上回り周波数が上昇し、一方受電側のエリア1、3は供給力が不足し周波数が低下。

○ 特に、西側地域(エリア1)では、大量の再エネ(主に風力発電)が停止したため、供給力が更に不足し、結局的に大規模な停電が発生。

<table>
<thead>
<tr>
<th>日時</th>
<th>欧州年 月 日 (土)</th>
</tr>
</thead>
<tbody>
<tr>
<td>停電電力</td>
<td>約 万万万 万</td>
</tr>
<tr>
<td>停電地域</td>
<td>ドイツ、フランス、イタリア、オーストリア、スペイン、ベルギー、ポルトガル、オランダ、スイス、ハンガリー、スロベニア計ヶ国</td>
</tr>
<tr>
<td>復旧時間</td>
<td>最大時間程度</td>
</tr>
</tbody>
</table>

【事故前】

【事故後】

周波数維持

周波数上昇

大規模な停電が発生

矢印: 電気の流れ ×: 地域間連系線の遮断

平成 年度電力系統関連設備形成等調査報告書 平成 年 月 日 資源エネルギー庁 (委託先: 社団法人 海外電力調査会)を基に作成
（参考資料8）個別協議の要件

○ 回答保留期間中においても、昼間に電力を系統へ流さないよう下記の要件を全て満たすご提案をいただける事業者さまにつきましては、個別に協議をさせていただきます。

個別協議の要件）

○ 当社が指定する期間 時間帯において、
 □ 併設された蓄電池の活用による系統への電力流入の停止
 □ 遠隔操作による発電設備の停止 出力抑制
などを実施していただけるよう 必要な設備 機能を備えていただくこと

○ 当社からの出力調整の要請に対しては、これに無補償で応じていただくこと

○ 上記における発電設備の出力の調整実績等を記録する装置を備え、当社からの要請に応じて、その記録を提出いただけること

（注1）上記の事項については、別途、覚書等を締結させて頂きます。

（注2）上記要件を満たす場合であっても、別途系続上の対策が必要な場合については、回答をお待ちいただく場合がございます。