

Make a brighter future for generations to come.

KYUDEN GROUP Environmental Data Book 2020

CONTENTS

Scope of Report

Kyushu Electric Power Company and its group companies

Reporting period

April 1, 2019 – March 31, 2020

(This report contains some information outside the Reporting period) **Publication Date**

i ablication ba

October 2020

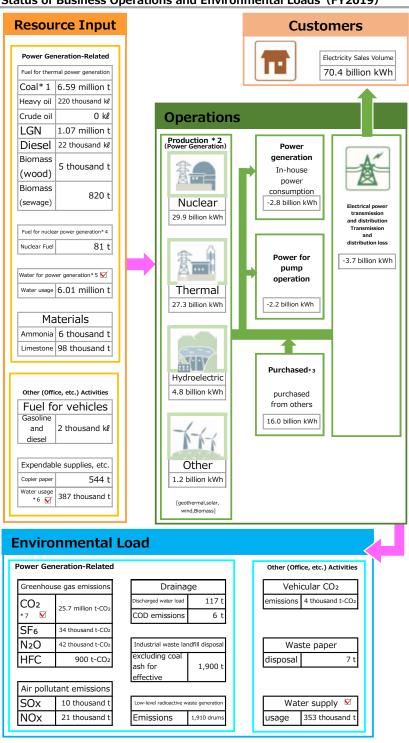
♦Points to note

From April 1, 2020, the power transmission and distribution department of Kyushu Electric Power Co., Inc. has been spun off as Kyushu Electric Power Transmission and Distribution Co., Ltd.

The actual values up to March 31, 2020 are listed as the actual results of Kyushu Electric Power Co., Inc. before the spin-off.

The Environmental Data received Independent

Practitioner's Assurance


Environmental data (FY2019 results) with this mark has received Independent Practitioner's Assurance to ensure the reliability of the environmental data it presents.

•	Environmental Loads Resulting from Business Operations	
0	Status of Business Operations and Environmental Loads (FY2019) \cdots	1
0	Reduction Amount of Environmental Loads in	
	Business Operations	2
	①Initiatives for Global Environmental Issues	
0	Supply Chain GHG Emissions(Scopes 1, 2, & 3)·····	3
0	CO2 Emissions for Kyushu Electric Power Company	4
0	Power Generation Composition Ratio and CO ₂ Emissions Volume	
	Change Over Time · · · · · · · · · · · · · · · · · · ·	4
0	Comparison with Other Providers for CO ₂ Emissions per Electricity	
	Sales Volume+	5
0	CO2 Emission Factors of Major Countries	5
0	Reference: CO2 emissions over lifecycle by power source in Japan \cdots	5
0	Geothermal Power Facilities (March 31, 2019)·····	6
0	Solar Power Facilities (March 31, 2019)·····	6
0	Wind Power Facilities (March 31, 2019)·····	7
0	Biomass Power and Waste Incineration Power Facilities	
	(March 31, 2019)·····	7
0	Hydroelectric Power Facilities (March 31, 2019)·····	8
0	Sulfur hexauoride (SF6) Emissions	8
0	Nitrous oxide (N2O) Emissions	8
0	Hydrouorocarbon (HFC) Emissions	9
0	Comparison of CO2 emission control effect and site area by Nuclear	
	Power, Solar Power, and Wind Power (Equivalent to 1 million kW) \cdots	9
0	Amounts of Fluorocarbons Subject to Regulation Refilled	
	and Emissions	9
0	Reduction results of Office power consumption	9
0	Control CO ₂ emissions by introducing fuel-efficient vehicles and	
	eco-driving	10
0	Thermal Power Total Heat Efficiency	10
0	Country Comparison for Transmission/Distribution Loss Rates······	11
	②Initiatives to Establish a Recycling Society	
0	Industrial Waste Production Amounts and Recycling Rates (FY2019) $\cdot \cdot$	11
0	Industrial Waste Production Amounts and Recycling Rates	11

iental data it presents.
\odot Waste Recycling Rate Comparison with Other Companies $\cdots \cdots \cdots 12$
\odot Coal Ash Production Amount and Recycling Rate++++++++++++++++++++++++++++++++++++
\bigcirc Waste Paper and Other General Waste Production Amounts and
Recycling Rates (FY2019) ····· 13
○ Paper Recycling (FY2019)
○ Green procurement rate/Purchased copier paper/
Water supply usage · · · · · · 13
\odot PRTR investigation results (FY2019) $\cdots\cdots\cdots 14$
\odot Status of spent fuel storage (as of the end of FY2019)++++++++++++++++++++++++++++++++++++
■ ③Local Environment Preservation
\bigcirc SOx and NOx Emissions by Thermal Power Station
(FY2019 figures) 14
\odot SOx and NOx Emissions per Quantity of Thermal Power
Generated · · · · · · 15
\odot SOx and NOx Emissions per Quantity of Thermal Power Generated,
by Country15
\bigcirc Water Usage for Power Generation and Wastewater Volume at
Thermal and Nuclear Power Stations (FY2019) $\cdots 16$
\bigcirc Water Usage for Power Generation and Wastewater Volume at
Thermal and Nuclear Power Stations $\cdots 16$
\odot Water Risk Assessment \cdots 17
\odot CO2 Absorption and Fixation by Company-Owned Forests $\cdots \cdots 17$
■ ④Collaborating with Communities
○ Energy/environmental education · · · · · · 18
■ ⑤Promoting Environmental Management
\odot Number of Qualifiers (2017-2019) $\cdots 18$
Environmental Accounting
\odot Economic Effects of Environmental Activities $\cdots \cdots 19$
\odot Effects of Environmental Activities $\cdots \cdots 19$
\odot Changes in CO ₂ , SOx, NOx Environmental efficiency
(Electricity SalesVolume Standard) ····· 20
\bigcirc Changes in Industrial Waste Environmental efficiency
(Electricity SalesVolume Standard) ····· 20
Group Companies
\odot Main achievements (Summary) $\cdots \cdots 21$
\odot Changes in greenhouse gas emissions $\cdots \cdots 21$
■ Independent Practitioner's Assurance for the Environmental Data
\odot Independent Practitioner's Assurance Report $\cdots 22$

■ Environmental Loads Resulting from Business Operations

Status of Business Operations and Environmental Loads (FY2019)

*1 Based on wet coal

*2 Amount of power generated by the company's own facilities.

* 3 "Purchased, etc." in corporate operations includes FIT purchased power and power used for sending and receiving interchange power to or from other companies

- *4 Uranium and plutonium allowance <converted from calorific value>
- * 5 Does not include seawater used as cooling water
- *6 Includes Recycled water/rainwater utilization
- *7 Includes CO₂ from In-house power consumption and purchasing power from other companies

Greenhouse gas emissions

Calculated based on "Calculation and publication of basic emission factors and adjusted emission factors for each electric power company" (including the amount of electricity purchased by other companies) ,which is a document announced by the government based on the Act on Promotion of Global Warming Countermeasure. Post adjustment = unadjusted CO₂ emissions -CO2 emission credit amortization + fixed price purchase adjusted CO₂ emissions.

·from in-house power consumptio In-house power consumption x CO2

emissions per electricity sales volume(postadjustment)

Emissions (Natural leakage + At the time of Equipment inspection, Equipment removal, Trouble, Repair work, etc.) ×22,800[GWP]

•N2O Emissions (Fuel use, Factory wastewater treatment, Treatment of human waste, etc.) ×298[GWP]

+HEC Consumption of

each HFC × corresponding GWP Air pollutant emissions

·SOx/NOx

The total value of each Thermal power (including internal-combustion power) "total exhaust gas amount x concentration in exhaust gas" converted by weight for each power plant.

Discharged water load

Total value of wastewater x weighting

coefficient of each water pollutant (our original coefficient) x total of average

concentration of each water pollutant at the

time of discharge (discharge).

*Total value (Thermal/Geothermal/NPS)

converted to the equivalent of

COD(Chemical Oxygen Demand) weight.

COD emissions

Total value of wastewater x average COD concentration at the time of discharge (emission)

*Total value (Thermal/Geothermal/NPS) of COD (Chemical Oxygen Demand) contained in wastewater treated by wastewater treatment equipment

Industrial waste landll disposal

External landfill disposal amount + Internal landfill disposal amount

Low-level radioactiv Low-level radioactive waste generation Amount generated (200 l drum equivalent)

- Amount of reduction* (200ℓ drum equivalent)

* The value of the amount of low-level radioactive waste generation by incineration, compression, etc. converted to a 200ℓ drum.

Vehicular CO₂ emissions Fuel consumption of general vehicles and

special vehicles x unit calorific value x CO2 emission factor + Electric vehicle charging power x CO2 emissions per electricity sales volume (post-adjustment)

Waste paper disposa Amount generated - Amount of recycle

Water supply usage Purchased amount of tap water

Reduction Amount of Environmental Loads in Business Operations

Expected Reductions				
CO ₂ reduction	Power generation and power purchasing	17.14	million t -CO2	
amount	Introduction of low pollutant company vehicles	304.7	t -CO2	
SF6 recovery amo	ount	250	thousand t-CO2	
SOx reduction arr	nount	55	thousand t	
NOx reduction an	nount	17	thousand t	
Actual Reduction	Amount			
Recycled industrial waste		915	thousand t	
Low-level radioactive waste reduction (200 ℓ drum equivalent)		3,392	drums	
Recycled paper	Recycled paper		t	
Recycled water/ra	ainwater utilization 🛛 🗹	34	thousand t	

CO2 reduction amount

 Reduction due to power generation and purchasing: Calculated using CO₂ emissions (post-adjustment) per electricity sales volume for Kyushu Electric Power in FY2017, comparing against a baseline which assumes all power is produced via renewable energy (excluding pumping for hydroelectric). Facilities efficiency improvement: Calculated using thermal efficiency and power transmission/distribution loss rate for FY2013 as a baseline

CO₂ Emissions Reduction from Introduction of Low Pollutant Company Vehicles

Calculated using a baseline which assumes electric vehicles (including plug-in hybrid cars), hybrid vehicles and fuelefficient vehicles are not introduced.

SF6 recovery amount

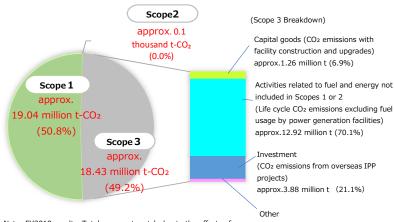
Calculated using baseline which assumes SF6 is not recovered from machinery into which it is injected during inspection and removal.

NOx reduction amount

Calculated using a baseline which assumes no denitrification is performed at power plants.

Low-level radioactive waste generation

The reduction in volume achieved by incinerating, compressing or otherwise disposing of the low-level radioactive waste generated is converted into an equivalent number of 200 ℓ drums.


Recycled paper

in addition to copier paper, includes newspapers, magazines, cardboard, confidential documents, etc.

Recycled water/rainwater utilization Recycled water(purchased + treated water)+rainwater utilization

■ ①Initiatives for Global Environmental Issues

Supply Chain GHG Emissions (Scopes 1, 2, & 3) V (FY2019)

Note: FY2019 results. Totals may not match due to the effects of rounding.

t = metric ton (tonne)

Other (CO₂ emissions with equipment purchases, transport & delivery (upstream logistics),waste, business trips, commuting,etc.) approx.0.37 million t (2.0%)

Ocalculated based on the Act on Promotion of Global Warming Countermeasure, "Greenhouse gas emission calculation / reporting / publication system","Basic guidelines for calculating greenhouse gas emissions through the supply chain (Ver2.3) 2017.12 Ministry of the Environment Ministry of Economy, Trade and Industry"

* 1 Calculated besed on "Emission intensity database for calculating greenhouse gas emissions of an organization through the supply chain (Ver3.0) 2020.3 Ministry of the Environment Ministry of Economy, Trade and Industry" was used for the caluculation. (Only Category 5 uses Ver2.6)

* 2 Calculated based on the LC-CO₂ emissions from the various power generation technologies (excluding fuel combustion) described in "Comprehensive Assessment of Life Cycle CO₂ Emissions from Power Generation Technologies in Japan (Report Number:Y06) 2016.7 Central Research Institute of Electric Power Industry" was used for the caluculation. For unknown power sources, the coefficients at the time of fuel procurement in the emission intensity database was used for calculation.

Unit : 10 thousand t-CO2

	FY2017	FY2018	FY2019
SCOPE 1	2,640 (74.6%)	1,756 (69.2%)	1,904 (50.8%)
SCOPE 2	0.01 (0.0%)	0.01 (0.0%)	0.01 (0.0%)
SCOPE 3	900 (25.4%)	783 (30.8%)	1,843 (49.2%)
category 1	37 (4.2%)	34 (4.3%)	33 (1.8%)
category 2	110 (11.7%)	107 (13.6%)	126 (6.9%)
category 3	440 (49.3%)	310 (39.5%)	1,292 (70.1%)
category 4	0.1 (0.0%)	0.1 (0.0%)	0.1 (0.0%)
category 5	3 (0.3%)	2 (0.3%)	3 (0.2%)
category 6	0.2 (0.0%)	0.2 (0.0%)	0.2 (0.0%)
category 7	0.8 (0.1%)	0.6 (0.1%)	0.7 (0.0%)
category 15	310 (34.5%)	330 (42.1%)	388 (21.1%)
total	3,540	2,539	3,747

Scope1

Emissions associated with fuel consumption (Calculated based on the Act on Promotion of Global Warming Countermeasure Article21-2,paragraph(1)) and Emissions from private logistics transportation $^{\circ}SF_{6}$

Emissions (natural leakage+at the time of equipment inspection, equipment removal, trouble, repair work,etc.) ×22,800[GWP] • N2O

Emissions (fuel use, factory wastewater treatment, treatment of human waste, etc.) $\,\times 298[{\rm GWP}]$

•CH4

Emissions (fuel use, factory wastewater treatment, treatment of human waste, etc.) $\times 25 [\text{GWP}]$

•HFC

Consumption of each HFC \times GWP of each HFC

Scope 2

Since CO2 emissions for in-house consumption are included in Scope1, Scope 2 is calculated bymultiplying the amount of electricity purchased in other power supply areas by CO2 emissions per electricity sales volume (post-adjustment)

Scope 3 ·Category 1

Emissions associated with purchasing goods Calculated by Σ [purchase amount of goods by item×emission factor (*1)]

•Category 2

Emissions from capital investment in the electricity business calculated by capital investment ×emission factor (*1)

·Category 3

Fuel combustion emissions (direct) by Eeectric energy purchased from other companies Calculated by Z[purchased electric energy by power source × emission factor (type: fuel or company or

national average factor] (In-house / <u>other companies</u>) Fuel combustion emissions (indirect) by other than fuel combustion at

power plants Calculated by Σ [amount of power generated by power source \times CO₂ emissions over lifecycle by power source

in Japan (*2)] %Emissions increased significantly compared to FY2018 because of the calculation and addition of the

underlined emissions from FY2019

Category 4

Emissions associated with logistics services calculated by fuel consumption of freight vehicles (materials and equipment) (crude oil equivalent)×emission factor (%1)

•Category 5

Emissions associated with the transportation and

treatment of waste generated in-house Calculated by $\Sigma[\text{processing amount by item}\times\text{emission}]$

factor (*1)]

•Category 6

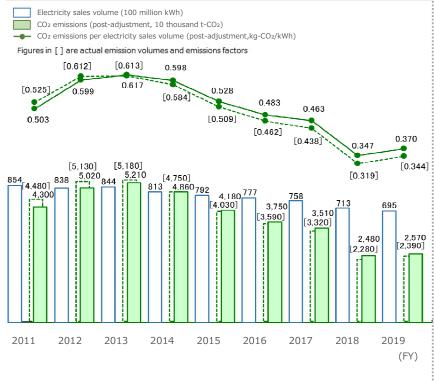
Emissions from business trips of company employees calculated by number of employees × emission factor (*1)

Category 7

Emissions associated with movement when company employees commute to work

Calculated by Σ[costs by commuting method × emission factor (*1)]

·Category 8


Included in Scope 1 and 2

·Category 15

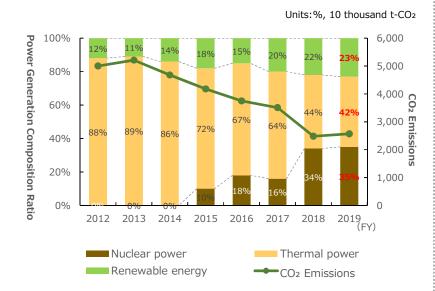
CO2 emissions from overseas power generation business Calculated by $\Sigma[$ fuel consumption by power source \times investment ratio \times emission factor (*1)]

Note) Figures may not match up with total values, as they have been rounded to the nearest whole number.

CO₂ Emissions for Kyushu Electric Power Company

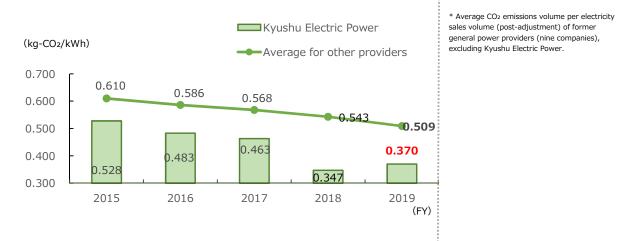
Figures in [] are actual emission volumes and emissions factors

Post-adjustment

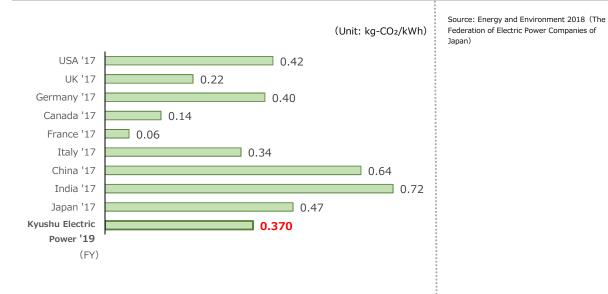

Adjusted in line with CO₂ emissions credits and feed-in tariffs (FIT).

Calculated according to the "Calculation and Announcement of Actual Emission Factors and Post-adjustment Emission Factors for Each Power Provider" released by the national government in accordance with the Act on Promotion of Global Warming Countermeasures (includes portion due to

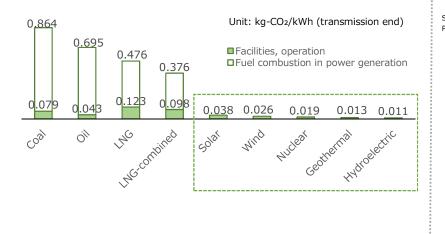
purchasing power from other companies). Total electricity sales volume differs after FY2016 as the


government's guidelines for calculating CO₂ emissions were revised to exclude electricity supplied to remote islands (excluding the Goto Islands, which are handled as part of mainland Nagasaki Prefecture).

Power Generation Composition Ratio and CO₂ Emissions Volume Change Over Time



* Power received from other companies does not include unspecied fuel types. The composition ratio shown here differs from the power source composition ratio for electricity sales volume.


Comparison with Other Providers for CO₂ Emissions

CO2 Emission Factors of Major Countries

Reference: CO₂ emissions over lifecycle by power source in Japan

Source: Central Research Institute of Electric Power Industry report

Geothermal Power Facilities (March 31, 2020)

		Unit : kW
		Output
	Otake	12,500
	Hatchoubaru	110,000
	Yamagawa	30,000
Existing facilities	Ogiri	25,800
(approx.218,000)	Takigami	27,500
	Hatchoubaru Binary	2,000
	Sugawara Binary *1	5,000
	Yamagawa Binary *1	4,990
Planned (2,000)	Otake *2	+2,000

<u>approx.390</u>

<u>thousand t</u>

*1 Developed by group company

*2 The additional 2,000 kW is added output from the refurbishment of the Otake Power Station

*Based on CO2 emissions factor (FY2018)

Solar Power Facilities (March 31, 2020)

CO₂ Emission Reductions

(FY2019)

Achieved Using Geothermal

		Unit : kW		
		Output		
	Mega Solar Omuta*	1,990		
	Omura Mega Solar *	17,480		
Existing facilities (approx.53,000)	Sasebo Mega Solar*	10,000		
	Installations at business sites, etc.	approx.2,300		
	Other Mega Solar*	approx.57,600		
計画 approx.60,000				
CO ₂ Emission Poductions				

* Developed by group company

*Based on CO2 emissions factor (FY2018)

CO₂ Emission Reductions Achieved Using Solar (FY2019) <u>approx.20</u> <u>thousand t</u>

Wind Power Facilities (March 31, 2020)

		Unit : kW	
			* Developed by group company
	Koshikijima	250	*Based on CO2 emissions factor(FY2018)
Existing facilities	Nagashima*	50,400	
(64,640)	Amamioshima*	1,990	
	Washiodake*	12,000	
Planned	Kushima*	64,800	
(92,000)	Karatsu-Chinzei*	27,200	

CO₂ Emission Reductions Achieved Using Wind (FY2019) <u>approx.20</u> thousand t

Biomass Power and Waste Incineration Power Facilities (March 31, 2019)

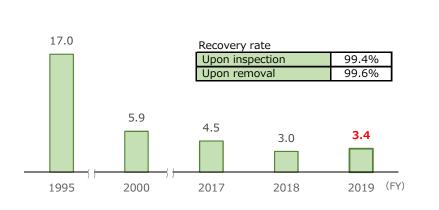
		Unit : kW
		Output
	Miyazaki Biomass Recycle*1	11,350
	Fukuoka Clean Energy* 1	29,200
Existing facilities	Reihoku* 2	(Up to 1% mixed combustion by weight ratio)
(approx.165,000)	Matsuura* 2	(About 800 t/year)
	Nanatsujima Biomass Power* 3	49,000
	Buzen New Energy*3	74,950
	Fukuoka Woody Biomass* 1	5,700
	Soyno Wood Power* 3	14,500
	Kanda Biomass Energy* 3	74,950
Planned	Okinawa Uruma New Energy*3	49,000
(368,000)	Shimonoseki Biomass Energy* 3	74,980
	Hirohata Biomass Power* 3	approx.75,000
	Oita Biomass Energy × 3	approx.22,000
	Ishikari Bioenergy × 3	51,500

CO₂ Emission Reductions Achieved Using Biomass (FY2019) <u>thousand t</u> *1 Developed by group company

*2 Co-firing in existing coal-fired power generation

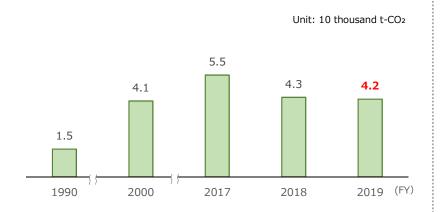
*3 Developed by a joint venture with partners including group company

*Based on CO2 emissions factor (FY2018)

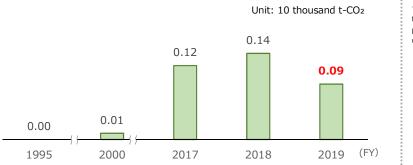

Hydroelectric Power Facilities (March 31, 2020)

		Unit : kW	
Output			*1 Excluding Power for pump operation
Existing facilities*1	143 sites	1,282,391	*2 Maximum additional output from facility refurbishment
	Inaba*2	420	* Developed by group company
Planned (約12,720)	Shin-takeda	8,300	*Based on CO2 emissions factor (FY2018)
	Tsukabaru* 3	+4,000	

Unit: 10 thousand t-CO2


CO₂ Emission Reductions Achieved Using Hydroelectricity (FY2019)

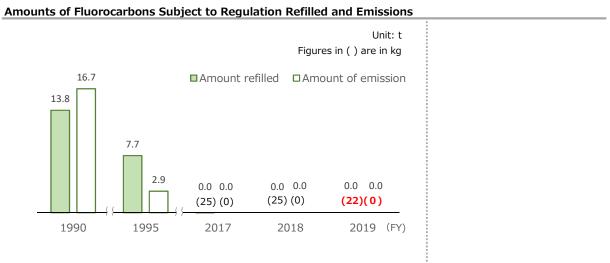
Sulfur hexauoride (SF6) Emissions



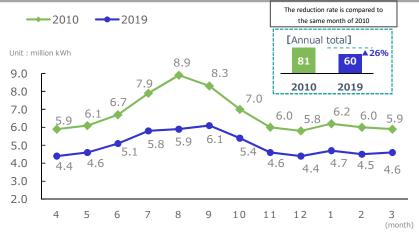
$10,000 t-CO_2 : SF_6$ gas volume is converted to CO₂ volume using the global warming potential for SF_6 (22,800 (23,400 until FY2014))

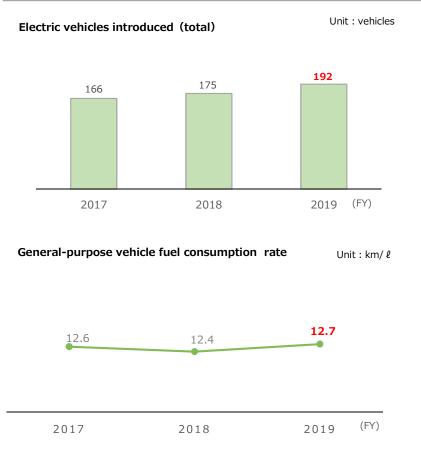
Nitrous oxide (N₂O) Emissions

 *10,000 t-CO₂ : N₂O gas volume is converted to CO₂ volume using the global warming potential for N₂O (298 (310 until FY2014))

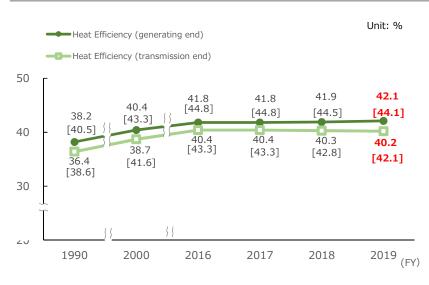


* 10,000 t-CO₂ : HFC gas volume is converted to CO₂ volume using the global warming potential for HFC (12–14,800 (140–11,700 until FY2014))


*Based on CO2 emissions factor (FY2018)

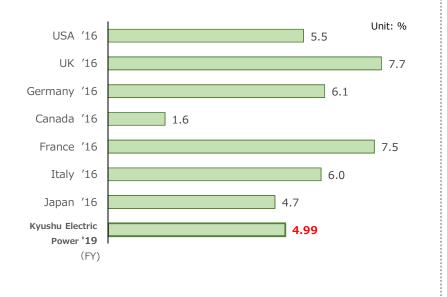

Comparison of CO₂ emission control effect and site area by Nuclear Power, Solar Power, and Wind Power (Equivalent to 1 million kW)

	Nuclear Power generation	Solar Power generation	Wind power generation
CO2 reduction amount	approx. 2.13 million t-CO ₂	approx. 0.43 million t-CO₂ →About 1/5 of nuclear power	approx. 0.61 million t-CO ₂ \rightarrow About 1/4 of nuclear power
Site area	0.6km [*]	approx58km ² →About 97 times that of nuclear power	approx214km →About 350 times that of nuclear power


Reduction results of Office power consumption

Control CO₂ emissions by introducing fuel-efficient vehicles and eco-driving

Thermal Power Total Heat Efficiency


[] are lower calorific value base-converted values for which Comprehensive Energy Statistics conversion factors, etc., have been used.

(reference)

High caloric value calorific value where water vapor produced by combustion is condensed and the latent heat held within recovered.

Low caloric value

calorific value where heat held in water vapor is not condensed and recovered but instead remains.

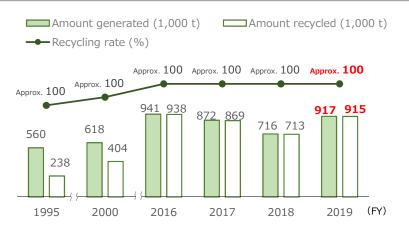
Source : Overseas electric power industry statistics 2018 (JAPAN ELECTRIC POWER INFORMATION CENTER,INC.)

■ ② Initiatives to Establish a Recycling Society

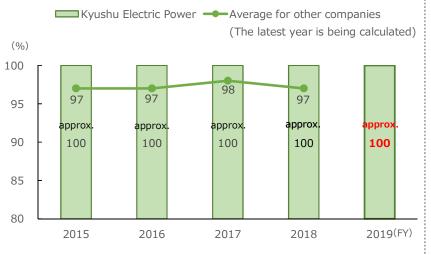
Industrial Waste Production Amounts and Recycling Rates (FY2019)

		Amount produced	Amount recycled	Recycling rate	Main recycling
		(t)	(t)	(%)	uses
Coa	al ash	752,110	752,110	100	Cement materials Concrete mixtures
	Heavy crude oil ash	7	7	100	Vanadium recovery
	Gypsum	134,065	134,065	100	Cement materials
	Sludge	2,891	993	34	Cement materials
Othe	Waste oil	2,266	2,250	99	Reuse in fuel oil
Other industrial waste	Waste plastic	254	249	98	Combustion aid materials
ustrial	Scrap metal	13,462	13,456	100	Metallic materials
wast	Waste concrete poles	11,198	11,198	100	Subbase, construction aggregate
õ	Glass, ceramic waste	151	151	100	Glass product materials
	Industrial waste requiring special treatment	573	525	92	Cement materials
	Other	189	142	75	Combustion aid materials
	Subtotal	165,056	163,036	98.8	_
Tot	al Industrial Waste	917,166	915,146	approx. 100	_

* Totals may not match due to the effects of rounding.


* t = metric ton (tonne)

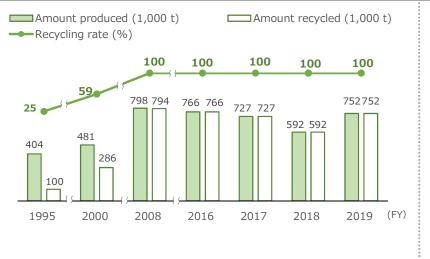
(reference)


Industrial Waste

Sludge, asbestos, waste oil, waste alkali and waste acid designated as industrial waste requiring special treatment, according to the Waste Management and Public Cleansing Act, due to the risk they pose to human health and living environments.

Industrial Waste Production Amounts and Recycling Rates

Waste Recycling Rate Comparison with Other Companies



Average for other companies

* Average CO₂ emissions volume per electricity sales volume (post-adjustment) of former general power providers (nine companies), excluding Kyushu Electric Power.

Source: Energy and Environment 2018 (The Federation of Electric Power Companies of Japan)

Coal Ash Production Amount and Recycling Rate

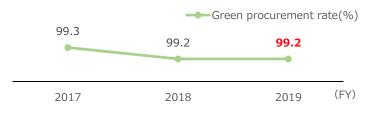
Waste Paper and Other General Waste Production Amounts and Recycling Rates (FY2019)

	Amount produced (t)	Amount recycled (t)	Recycling rate (%)	Main recycling uses
Waste paper	1,054	1,047	99	Recycled paper
Shells	317	73	23	Subbase
Dam driftwood	2,551	2,551	100	Substitute for straw litter

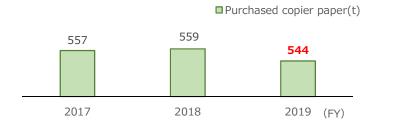
t = metric ton (tonne)

Paper Recycling (FY2019)

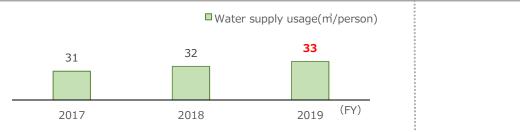
	Amount recovered (t)	Main recycling use
Newspapers	54	Paper (copier paper, catalog paper, etc.), newspaper
Magazines	18	Cardboard material, paper twine
Cardboard	58	Cardboard material
Confidential documents	778	Paper (copier paper, catalog paper, etc.),toilet paper, cardboard material
Other	140	Paper (copier paper, catalog paper, etc.), toilet paper, cardboard material, paper twine
Total	1,047	_


Newspapers

Includes amount of recovered magazines and cardboard at some sites


Other "Other" includes copier paper, envelopes, etc.

*Totals may not match due to the effects of rounding.


Green procurement rate

Purchased copier paper

Water supply usage M

PRTR investigation results (FY2019)

					Unit : kg
Index No.	Chemical substance	Applications	Qty. handled	Qty. released into the air	Qty. transferred
33	Asbestos	Insulation agent	2,000	_	2,000
53	Ethylbenzene	Painting and Antifouling	3,800	3,800.0	_
71	Ferric chloride	Wastewater treatment agent	35,000	0.0	_
80	Xylene	Painting	5,600	5,600.0	—
164	2,2-Dichloro-1 1,1-trifluoroethane	Refrigerant for air conditioners	1,000	_	_
211	Dibromotetrafluoroethane	Fire extinguisher	2,600	330.0	2,200
300	Toluene	Boiler	8,100	8,100.0	_
333	Hydrazine	Water treatment agent	19,900	0.4	_
405	Boron compound	Reactor reactivity control material / analytical reagent	3,000	0.0	_
438	Methylnaphthalene	Diesel generator	470,750	2,347.7	122

PRTR

Pollutant Release Transfer Register

Status of spent fuel storage (as of the end of FY2019)

Unit : drums (200 drum equivalent)						
	Accumulated	Accumulated	Quantit	y stored		
	generation	emission	Inside the NPS	Carry-out amount		
Genkai NPS	4.020	1 7 2 0	38,418	12,712		
Gerikar NPS	▲838	1,720	(39,256)	(10,992)		
Candai NDC	1 0 2 0	0	27,303	640		
Sendai NPS	1,028	0	(26,275)	(640)		
合計	100	1 720	65,721	13,352		
	190	1,720	(65,531)	(11,632)		

* (Data of 2019.3.31)

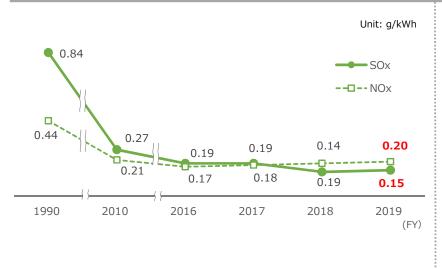
■ ③Local Environment Preservation

SOx and NOx Emissions by Thermal Power Station (FY2019 figures)

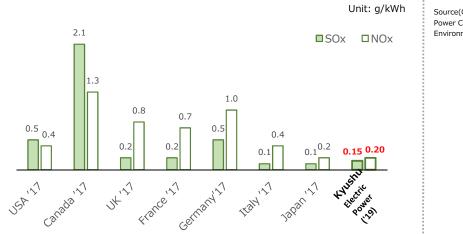
Unit: t t=metric ton (tonn				
Thermal power station* (Fuel)	SOx	NOx		
Shin-Kokura (LNG)	0	21		
Karita (Coal/heavy oil/crude oil)	49	154		
Buzen (Heavy oil/crude oil)	0	0		
Matsuura (Coal)	1,578	1,652		
Shin-Oita (LNG)	0	820		
Reihoku (Coal)	1,922	2,295		
Sendai (Heavy oil/crude oil)	0	0		
Total	3,539	4,941		

\ast Excludes internal combustion power stations

(reference)


SOx

Generic term for sulfur oxides, including SO₂ (sulfur dioxide) and SO3₃(sulfuric trioxide). Generated when fossil fuels such as coal and petroleum are burned and the sulfur content in the fuel oxidizes, they cause air pollution and acid rain.


NOx

Generic name for nitrogen oxides, including NO (nitric oxide) and NO22(nitrogen dioxide). Generated from the combustion of nitrogencontaining fuel, and also from the oxidation of nitrogen in the air during combustion, they cause air pollution and acid rain.

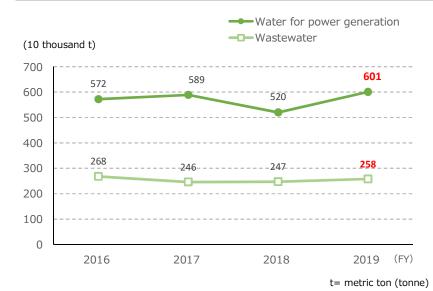
SOx and NOx Emissions per Quantity of Thermal Power Generated

SOx and NOx Emissions per Quantity of Thermal Power Generated, by Country

Source(Overseas/Japan):Federation of Electric Power Companies' pamphlet "Energy and Environment 2018"

Water Usage for Power Generation and Wastewater Volume at Thermal and Nuclear Power Stations (FY2019)

Unit: 10 thousand t				
Power	Power station		Wastewater	
	Shin-Kokura	28	16	
	Karita	41	6	
	Buzen	11	9	
Thermal	Matsuura	165	62	
power	Ainoura	0	0	
	Shin-Oita	57	44	
	Reihoku	166	55	
	Sendai	15	4	
Nuclear	Genkai	67	31	
power	Sendai	46	31	
Internal com	oustion power	4	_	
Tc	otal	601	258	


Water for power generation

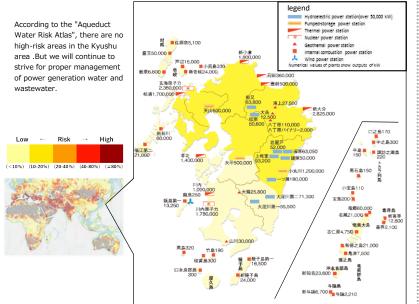
Amount of consumption deducted for daily use from external input (city water, well water, etc.).Does not include seawater used for cooling water or water circulating in the power station.

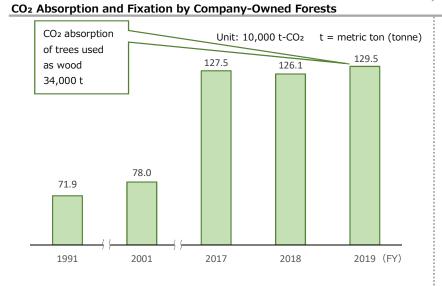
Wastewater

Amount of wastewater properly treated by wastewater treatment equipment at each power station.

Water Usage for Power Generation and Wastewater Volume at Thermal and Nuclear Power Stations 🗹

Water for power generation


Amount of consumption deducted for daily use from external input (city water, well water, etc.).Does not include seawater used for cooling water or water circulating in the power station. %:Until FY2018 results, internal-combustion


power plant results are excluded.

Wastewater

Amount of wastewater properly treated by wastewater treatment equipment at each power station. %Internal-combustion power plant results are excluded.

Water Risk Assessment

* Calculated based on measured values from forest survey according to Japan's national greenhouse gas inventory calculation method

% Aqueduct water risk atlas/BASELINE/ Water Stress (2020.7.31) J

【出典】https://www.wri.org/aqueduct

 \ast The amount of CO2 absorption until FY'01 does not include trees younger than 15 years

Collaborating with Communities

Energy/environmental education

			Unit : times
	FY2017	FY2018	FY2019
Eco-mother activity frequency	200	approx.200	approx.200
On-demand course frequency	529	approx.560	approx.440
Environmental education in Kuju Kyuden Forest	24	22	28

■ ⑤ Promoting Environmental Management

Number of Qualifiers (2017-2019)

			Unit: people
Qualification	No	 of qualifie 	ers
Quanication	2017	2018	2019
Qualified Person for Energy Management	740	723	706
Energy Manager for Type 2 Designated Energy Management Factory	52	51	47
Pollution control managers (including pollution prevention chief managers)	718	704	684
Waste treatment facility technology managers	179	169	158
Specially-controlled industrial waste management officers	585	544	535

Environmental Accounting

Economic Effects of Environmental

Scope of age	Scope of aggregation : Kyushu Electric Power Company Target period : 2018.4.1~2019.3.31 Unit : Billion Yen						
Classifie	cation of	Main activities	Economic Effects				
environmer	ntal activities	Main activities	2018	2019			
Resource	Waste measures	Sale of disused valuables	3.3	3.4			
circulation	Waste reduction	Reduction of processing costs such as final disposal by recycling	62.3	79.4			
		148.2	82.8				

* Totals may not match due to the effects of rounding.

Effects of Environmental Activities

Scope of aggregation : Kyushu Electric Power Company Target period : 2018.4.1~2019.3.31

Classification	Item (unit)		Effects of Environmental Activities		
Classification				2018	2019
		Nuclear Power Generation		1,394	1,038
		New energy power generation / purchase		518	399
Local	Suppression of	Hydroelectric / Geothermal	(10	357	254
environmental	GHG emissions	Improved thermal efficiency	thousand	33	29
preservation		Reduction of transmission and distribution loss	t-CO2)	7	0
		Utilization of Kyoto mechanism, etc.		0	0
		SF6 Emission reduction		25	25
Local	SOx reduction amount			45	55
environmental	NOx reduction amount		(1,000t)	17	17
preservation	Soot and Dust reduction amount			142	37
	Industrial Waste	Amount recycled		713	915
		Appropriate disposal amount	(1,000t)	3	2
Bosourco	General Waste Management and	Amount recycled	(1,0000)	3	5
Resource circulation	Disposal	Appropriate disposal amount		0	1
	Low-level radioactive waste reduction		(drums)	3,375	33,892
	(200ℓ drum (equivalent)	(urunns)	5,575	55,692
	Spent nuclear	fuel amount	(Quantity)	4,201	4,486

Nuclear Power Generation

Estimated assuming that the amount of power generated by nuclear power was covered by the average of all our power sources

New energy power generation / purchase, Hydrodectric / Geothermal Estimated assuming that the amount of electricity generated by renewable energy (hydropower excluding power for pump operation) is covered by the average of all of our power sources

Improved thermal efficiency, Reduction of transmission and distribution los Calculated based on 2013 value

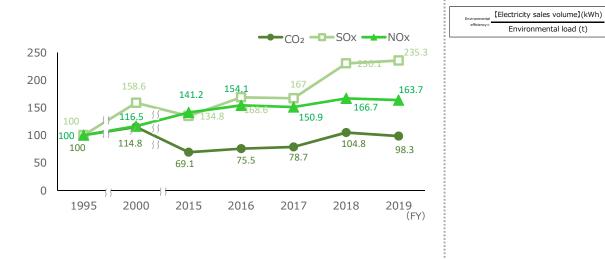
Utilization of Kyoto mechanism, etc.

Amortized by June of the following year, including the amount reflected for the calculation of CO2 emissions per electricity sold in the relevant year

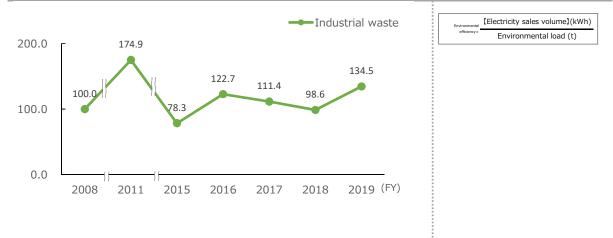
SF₆ Emission reduction

Convert the amount recovered during inspection / removal to CO2 weight using the SF₆ GWP (22,800)

SOx,Nox,Soot reduction amount


Calculated based on the difference from the actual emission amount, using the emission amount (estimated value) when no measures are implemented as the baseline.

General Waste Management and Disposal Amount of waste paper, dam driftwood, and shellfish in general waste


Spent nuclear fuel amount Includes fuel to be reused

*FY2018 CO₂ emissions was used to calculate the CO₂ emission control effect per electric energy

Changes in CO₂, SO_x, NO_x Environmental efficiency (Electricity SalesVolume Standard)

Changes in Industrial Waste Environmental efficiency (Electricity SalesVolume Standard)

Group Companies

Main achievements (Summary)

	Thomas		Unit			
	Item			FY2017	FY2018	FY2019
	Office power	usage	1 million kWh	24	23.7	22.2
	Once power	Usage per unit area	kWh/mႆ	91.2	89	83.4
Initiative	Private logistics transportation	Low-emission vehicle introduction ratio	%	69.5	71	73.2
es to Ado	(Excluding special vehicles)	Fuel consumption rate (fuel efficiency)	km/ℓ	11.2	11.9	11.8
dress Glo	SF6 recovery rate	During machine maintenance	%	100	100	99.5
bal Envi	SF6 recovery rate	During machine removal	%	100	100	100
Initiatives to Address Global Environmental Issues	Recovery implementati maintenance for fluorocar	%	100	100	96	
al Issues	Copier pa	Million sheets	133.8	134.3	129.8	
	Water supply	usage	1,000t	143.5	139.3	127.1
		per person	m/person	12.5	12	10.8
		Industrial Waste	%	93	92	94
Initiati a Rec	Recycling	Coal ash	%	100	100	100
Initiatives to Establish a Recycling Society	rate	other than coal ash	%	75	69	87
stablish ocietv		Waste paper	%	94	94	94
	Green procu	en procurement rate		86	82	86
Local envi presei	SOx emissions thermal pow	per quantity of er generated	g/kWh	0.41	0.38	0.18
Local environmental preservation	NOx emissions per quantity of thermal power generated		g/kWh	0.26	0.24	0.18

Low-emission vehicle introduction ratio Percentage of Electric vehicles (including plugin hybrid vehicles), hybrid vehicles and fuelefficient vehicles

no records

Those what own the equipment but do not have a record of inspection or removal of the equipment

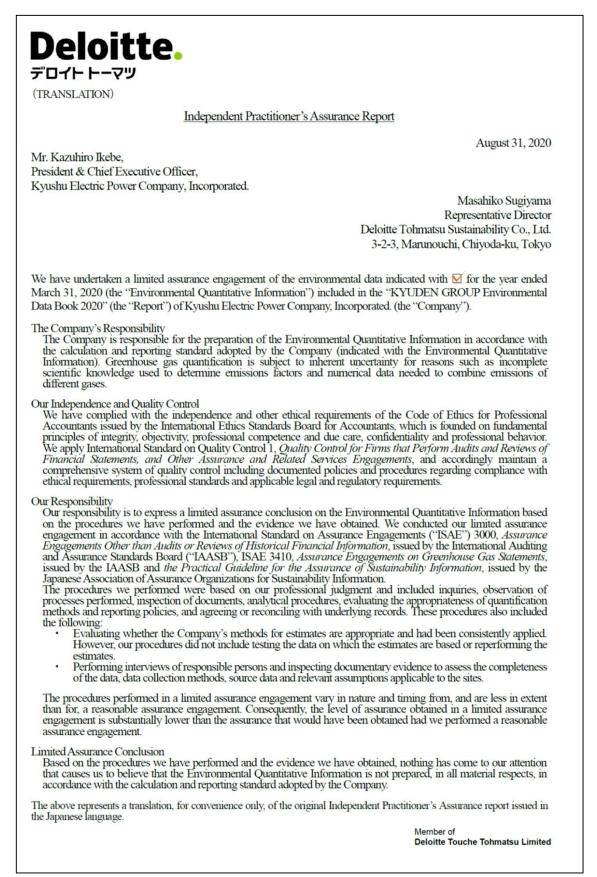
Copier paper usage A4 size conversion number

Green procurement rate The scope of procurement is office supplies (paper, stationery) Products that meet socially recognized standards, etc.

Changes in greenhouse gas emissions

	Unit : 1,000t-CO2				
	FY2017	FY2018	FY2019		
CO2(carbon dioxide)	143	280	269		
CH₄(methane)	0.2	0	0		
N2O(Dinitrogen monoxide)	0	0	0		
HFC(Hydrofluorocarbon)	0	70.9	0		
PFC(Perfluorocarbon)	_	_	_		
SF6(Sulfur hexafluoride)	0	0	0		
Total	143.2	350.6	269.0		

* Totals may not match due to the effects of rounding.


CO2

Excluding electricity sold to electric power companies, etc. Based on CO₂ emissions factor (FY2017)

Independent Practitioner's Assurance for the Environmental Data

Independent Practitioner's Assurance Report

This Environmental Data Book has been assured by Deloitte Tohmatsu Sustainability Co., Ltd., to ensure the reliability of the environmental data it presents.

